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A class of two-loop finite N = 1 SUSY Yang-Mills theories 

Fang-Xiao Dong?$, Xiang-dong JiangO and Xian-jian ZhouO 
t International Centre for Theoretical Physics, Miramare, Trieste, Italy 
8 Institute of High Energy Physics, Academia Sinica, Beijing, People's Republic of China 

Received 26 November 1985 

Abstract. In this paper, a whole class of two-loop finite N = 1 supersymmetric Yang-Mills 
theories for all groups with the exception of SU( N) is obtained. 

Recently, much attention has been paid to finite quantum field theories. Although a 
large class of N = 4 finite supersymmetric Yang-Mills (SYM) theories (Sohnuis and 
West 1981, West 1983, Mandelstam 1983, Brink et a1 1983) and N = 2  SYM theories 
(Howe et a1 1983, West 1983) has been found, it is not easy, but possible, to construct 
realistic models based on them (del Aguila et a1 1985, Dong et af 1984) because the 
representations of the matter multiplets in these theories are real and their Yukawa 
couplings are too stringent. Then it would be interesting to find a class of finite theories 
which can be used to construct phenomenologically accepted models: these would be 
the finite N = 1 supersymmetric Yang-Mills theories. It has been proved by direct 
calculation (Parkes and West 1984, West 1984) and by considerations involving the 
chiral anomaly (Jones and Mezincescu 1984) that some conditions which guarantee 
one-loop finiteness ensure two-loop finiteness as well. It has not been proved, though, 
whether these conditions will keep these theories finite to all orders. It is of interest 
to find all possible two-loop finite theories (Hamidi er a1 1984) and construct realistic 
models out of them (Jones and Raby 1984, Hamidi and Schwarz 1984, Dong and Zhou 
1985). In this paper, we identify all possible representations of all groups, with the 
exception of S U ( N )  (Hamidi et a1 1984, Jiang and Zhou 1986), which lead to two-loop 
finiteness. 

Consider a globally supersymmetric N = 1 theory in four dimensions with a simple 
gauge group G. It may accommodate matter (chiral) supermultiplets 4 in an arbitrary 
representation R of G which contain irreducible representations R ' :  

R = Q R '  
L 

4 -8 4 ' .  
I 

The superpotential is defined as follows: 

1J.k 

where the subscripts U, 6 and c label components of the representations R ' ,  R' and 
exceptional groups only the cubic self-coupling of the adjoint representation possesses 

I: On leave of absence from Institute of High Energy Physics, Academia Sinica, Beijing, People's Republic 
of China. 
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Rk,  respectively. The coefficients d $  can be arranged symmetrically with respect to 
( y ) ,  (f)  and (i). The conditions for one-loop finiteness (Parkes and West 1984) are 

N 

T (  R )  = T( R I )  = 3C2( G) (3) 
r=l  

C d$d?$bc=2g2~aa a i r  C 2 ( ~ i )  (4) 
b,cJ,k 

where T(  R I )  and C2( R , )  are the Dynkin index and the value of the quadratic Casimir 
operator for the representation R,,  respectively, C2( G )  = C2( RA),  where RA is the 
adjoint representation of G. The anomaly condition is trivially satisfied for all groups 
with the exception of SU(N) .  

Our task here is to find all possible solutions for equations (3) and (4). We know 
that the only irreducible representations R' that can occur in R are the ones whose 
indices do not exceed 3C2(G) .  Singlets are excluded by condition (4). In seeking 
solutions for equations (3) and (4), it is more convenient, firstly, to consider the 
following equation: 

c p,py  = m,T(Ra) ( 5 )  
P,Y 

where m, is the multiplicity of the representation R,  in R. Equation (5) IS weaker 
than equation (4), but it is useful for quickly eliminating many candidates from the 
list of admissible R. 

The procedure for finding all two-loop finite theories for all groups is as follows. 
(i) Obtain all solutions of equation (3) for which the index of each irreducible 

(i i)  Use equation (5) to eliminate some of the possible candidates. To do this, one 

(iii) The remaining candidates are further checked by equation (4). 
There are two facts we would like to point out in the last step. The first is that we 

take a specific set of drlk such that the right-hand side of equation (4) is diagonal in i 
and i'. We shall call this the diagonality condition. 

representation does not exceed 3C2( G), as is stated above. 

must find all possible Yukawa couplings by using R. 

Now, from equation (4), we know that we need to calculate 

A r t  = d,kd ? ] k .  
ik 

Let A,, denote a matrix element of the matrix A. Due to the diagonality condition 
mentioned earlier, equation (4) becomes 

Here Ci are constants related to C 2 ( R i ) .  Obviously 
under Idijk12, so it is very easy to deal with. 

The second fact is that for the Yukawa couplings 

this is a linear equation system 

case of S O ( N ) ,  there is no repeated superfield. In other words, the multiplicity m, 
of the representation R" in R must be larger than two, otherwise the Yukawa coupling 
vanishes. For example, the Yukawa coupling t.T 0 must be vanishing if there is only 

one spinor representation t in R. For the Sp(2N) case, the Yukawa couplings 0 0 E, 
1 LEI and CO U1 ~ I p o s s e s s  the same property as stated above, while for the 
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Table 1. Multiplicities m, of the irreducible components R, of R for all  the solutions for 
SO(n). 

Irrep 

GI Comments U t I 
Dim 7 8 21 27 35 
Index 2 2 10 18 20 

SO(7) 1 1 
n 5 - n  1 n=0,1,2 
1 - n  n 1 1 n = O , l  
6 - n  n 1 n = 0,1, . . . , 4  

IO-2n 2n 1 n =0,1,. . . , 5  
3 

5 10 

Dim 9 16 36 44 84 
Index 2 4 14 22 42 

SO(9) 
3-211 

10-2n 

14-2n 
7 

1 
n 1 1 n = 0 , 1  
n 1 n = 0,1, . . . , 3  

3 
n 1 n = 0, 1, . . . ,7 
7 

Irrep 

m Comments t 1 B 0 
~ 

Dim 14 64 64 91 104 
Index 2 16 16 24 32 

SO(14) 4 2 
20- 12n n 1 n=O,1 

24- 16n n n 1 n=O,1 
3 

N ( 2 N  - 1) 
4 ( N - 1 )  4 ( N + 1 )  

N ( 2 N +  1) - 1 2 % - I  2 % - I  
2v-3 2%-3 

Dim 2 N  
Index 2 

SO(2N) 2 N  - 10 
2 N - 6  
4 ( N - 2 )  
4 ( N - 1 )  

12 1 
16 1 

2 N 3 8  
1 1 

1 
1 
3 
1 N = 8  

N = 9  

Dim 10 16 16 45 54 
Index 2 4 4 16 24 

SO(10) 4 - 2 n  n 1 1 n = 0 , 1  
10-2n 1 n 1 n = 1,2, 3 
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Table 1. (continued) 

Irrep 

0 t 1 E m Comments 

Dim 10 16 16 45 54 
Index 2 4 4 16 24 

12-2n n 1 n = 0, 1, .  . . , 4  
4 2 2 1 

1 1 1 1 
2 

16-4n n n 1 n = 0, 1 , .  . . , 4  

8 8 - n  n n = 0, 1, . . . , 4  
3 

~~ 

Dim 12 32 32 66 77 
Index 2 8 8 20 28 

SO(12) 2 
2 1 

16- 10n 

n m 
4 n m 
8 n m 

12 n m 
20-4n n 

L 
1 
1 n=0,1 

n + m = 5  
n + m = 4  
n + m = 3  
n + m = 2  
n=0,1 

Irrep 

Dim 8 8 8 28 35 35 35 
Index 2 2 2 12 20 20 20 

2 
2 

2 
2 

2 
2 

2 
2 

I 1 
2 2 

1 1 
2 2 

1 1 
2 2 

1 
1 
1 

1 
1 
1 

3 
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Table 1. (continued) 
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Irrep 

0 t 6 m [ *  Comments 

Dim 8 8 8 28 35 35 35 
Index 2 2 2 12 20 20 20 

12 1 
10 1 1 1 
8 2 2 1 
6 3 3 1 
4 4 4 1 
2 5 5 1 
6 6 6 

Irrep 

0 t E m Comments 

Dim 11 32 55 
Index 2 8 18 

65 
26 

SO(l1)  1 
5-4n n 1 

14 
3 

18-4n n 1 

n = 0 , 1  

n = 0, 1, . . . , 4  

Dim 13 64 78 90 
Index 2 16 22 30 

SO(13) 3 2 
1 8 - l l n  n 1 

3 
22-8n n 1 

n = O , 1  

n = O , 1 , 2  

Dim 2 N + 1  2 N ( 2 N + 1 )  ( N +  1 ) ( 2 N +  1 ) -  1 
2 ( 2 N - 1 )  2 ( 2 N  + 3 )  2 2v-2 Index 

S O ( Z N + l )  2 N - 9  2 N 3 7  
2 N - 5  1 1 
4 N  - 6  1 
4 N - 2  1 

3 
10 1 1 N = l  

exceptional groups only the cubic self-coupling of the adjoint representation possesses 
such a property. Therefore we get all possible solutions for all groups, with the 
exception of SU( N ) ,  and they are listed in table 1 for SO( N ) ,  table 2 for Sp(2N) and 
table 3 for the exceptional groups. 
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Table 2. Multiplicities m, of the irreducible components R, of R for all the solutions for 
Sp(2N). 

Irrep 

0 E l m  H EF Comments 

Dim 
Index 

__ ~~~~ 

4 5 10 14 16 
1 2 6 14 12 

SP(4) 0 0 1 0 1 
4-211 n O  1 0 n = l , 2  
0 0 3 0 0 
0 3 2 0 0 

12 - 2 n  n 1 0 0 n = 0,1, . . . , 6  
12 3 0 0 0 

Irrep 

0 E m a Comments 

Dim 6 14 21 14 
Index 1 4 8 5 

Sp(6) 0 0 3 0 
0 2 2 0 

16-411 n 1 0 n =0,  1, . . . , 4  
11-4n n 1 1 n = 0 , 1 , 2  
6-4n n 1 2 n = O , l  
1 0 1 3 

24-4n n 0 0 n = 2 , 3 , .  . . , 6  
19-411 n 0 1 n = 2 , 3  

Irrep 

0 
U 

Comments 

Dim 8 21 36 42 48 
Index 1 6 10 14 14 

s p w  6-6n n 1 0 1 n = O ,  1 
6-6n n 1 1 0 n = 0 , 1  

20 - 6n n 1 0 0 n = 0 , 1 , 2 , 3  
0 0 3 0 0 

12 3 0 0 0 
0 5 0 0 0 

Irrep 

0 Comments B m 1 
Dim 10 44 5 5  110 
Index 1 8 12 21 

SP( 10) 0 0 3 0 
24-811 n 1 0 n = 0, 1 ,2 ,3  
36-811 n 0 0 n = 2 , 3 , 4  
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Table 2. (continued) 
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Irrep 

0 B m Comments 

Dim 2 N  
Index 1 

N ( 2 N  - 1 ) -  1 N ( 2 N  + 1 )  N 2 5  
2 N - 2  2 N + 2  

S p ( 2 N )  0 0 3 
2 ( 2 N + 2 ) - ( 2 N - 2 ) m  m 1 2 ( 2 N  + 2 ) / ( 2 N  -2 )  3 m 2 0 
3 ( 2 N + 2 ) - ( 2 N - 2 ) m  m 0 3 ( 2 N + 2 ) / ( 2 N - 2 ) 3 m 3 2  

Table 3. Multiplicities m, of the irreducible components R, of R for all solutions for E,, 
E,,  E,, F, and G2 groups. 

Irrep 

27 27' 78 Comments 

Index 6 6 24 

E6 0 0 3 
4 4 1 
m f l  0 m + n = i 2  

Irrep 

56 133 248 26 52 7 14 27 

Index 12 36 60 6 18 2 8 18 

E, 0 3 

E8 3 
F, 0 3 

6 1 
9 0 

6 1 

G2 3 0 1 
8 1 0 
0 3 0 
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